3.70 \(\int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=112 \[ \frac {24 \tan (c+d x)}{5 a^3 d}-\frac {3 \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {3 \tan (c+d x)}{d \left (a^3 \cos (c+d x)+a^3\right )}-\frac {3 \tan (c+d x)}{5 a d (a \cos (c+d x)+a)^2}-\frac {\tan (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

[Out]

-3*arctanh(sin(d*x+c))/a^3/d+24/5*tan(d*x+c)/a^3/d-1/5*tan(d*x+c)/d/(a+a*cos(d*x+c))^3-3/5*tan(d*x+c)/a/d/(a+a
*cos(d*x+c))^2-3*tan(d*x+c)/d/(a^3+a^3*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2766, 2978, 2748, 3767, 8, 3770} \[ \frac {24 \tan (c+d x)}{5 a^3 d}-\frac {3 \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {3 \tan (c+d x)}{d \left (a^3 \cos (c+d x)+a^3\right )}-\frac {3 \tan (c+d x)}{5 a d (a \cos (c+d x)+a)^2}-\frac {\tan (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + a*Cos[c + d*x])^3,x]

[Out]

(-3*ArcTanh[Sin[c + d*x]])/(a^3*d) + (24*Tan[c + d*x])/(5*a^3*d) - Tan[c + d*x]/(5*d*(a + a*Cos[c + d*x])^3) -
 (3*Tan[c + d*x])/(5*a*d*(a + a*Cos[c + d*x])^2) - (3*Tan[c + d*x])/(d*(a^3 + a^3*Cos[c + d*x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{(a+a \cos (c+d x))^3} \, dx &=-\frac {\tan (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {\int \frac {(6 a-3 a \cos (c+d x)) \sec ^2(c+d x)}{(a+a \cos (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac {\tan (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {3 \tan (c+d x)}{5 a d (a+a \cos (c+d x))^2}+\frac {\int \frac {\left (27 a^2-18 a^2 \cos (c+d x)\right ) \sec ^2(c+d x)}{a+a \cos (c+d x)} \, dx}{15 a^4}\\ &=-\frac {\tan (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {3 \tan (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {3 \tan (c+d x)}{d \left (a^3+a^3 \cos (c+d x)\right )}+\frac {\int \left (72 a^3-45 a^3 \cos (c+d x)\right ) \sec ^2(c+d x) \, dx}{15 a^6}\\ &=-\frac {\tan (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {3 \tan (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {3 \tan (c+d x)}{d \left (a^3+a^3 \cos (c+d x)\right )}-\frac {3 \int \sec (c+d x) \, dx}{a^3}+\frac {24 \int \sec ^2(c+d x) \, dx}{5 a^3}\\ &=-\frac {3 \tanh ^{-1}(\sin (c+d x))}{a^3 d}-\frac {\tan (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {3 \tan (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {3 \tan (c+d x)}{d \left (a^3+a^3 \cos (c+d x)\right )}-\frac {24 \operatorname {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{5 a^3 d}\\ &=-\frac {3 \tanh ^{-1}(\sin (c+d x))}{a^3 d}+\frac {24 \tan (c+d x)}{5 a^3 d}-\frac {\tan (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {3 \tan (c+d x)}{5 a d (a+a \cos (c+d x))^2}-\frac {3 \tan (c+d x)}{d \left (a^3+a^3 \cos (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.15, size = 286, normalized size = 2.55 \[ \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (8 \tan \left (\frac {c}{2}\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right )+\tan \left (\frac {c}{2}\right ) \cos \left (\frac {1}{2} (c+d x)\right )+\sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right )+20 \cos ^5\left (\frac {1}{2} (c+d x)\right ) \left (\frac {\sin (d x)}{\left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\sin \left (\frac {c}{2}\right )+\cos \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}+3 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-3 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )+76 \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right )+8 \sec \left (\frac {c}{2}\right ) \sin \left (\frac {d x}{2}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right )\right )}{5 a^3 d (\cos (c+d x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + a*Cos[c + d*x])^3,x]

[Out]

(2*Cos[(c + d*x)/2]*(Sec[c/2]*Sin[(d*x)/2] + 8*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] + 76*Cos[(c + d*x)/2]^
4*Sec[c/2]*Sin[(d*x)/2] + 20*Cos[(c + d*x)/2]^5*(3*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 3*Log[Cos[(c + d
*x)/2] + Sin[(c + d*x)/2]] + Sin[d*x]/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] - Sin[(c
+ d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))) + Cos[(c + d*x)/2]*Tan[c/2] + 8*Cos[(c + d*x)/2]^3*Tan[c/2]
))/(5*a^3*d*(1 + Cos[c + d*x])^3)

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 190, normalized size = 1.70 \[ -\frac {15 \, {\left (\cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (\cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (24 \, \cos \left (d x + c\right )^{3} + 57 \, \cos \left (d x + c\right )^{2} + 39 \, \cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right )}{10 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} + 3 \, a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/10*(15*(cos(d*x + c)^4 + 3*cos(d*x + c)^3 + 3*cos(d*x + c)^2 + cos(d*x + c))*log(sin(d*x + c) + 1) - 15*(co
s(d*x + c)^4 + 3*cos(d*x + c)^3 + 3*cos(d*x + c)^2 + cos(d*x + c))*log(-sin(d*x + c) + 1) - 2*(24*cos(d*x + c)
^3 + 57*cos(d*x + c)^2 + 39*cos(d*x + c) + 5)*sin(d*x + c))/(a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d*x + c)^3 + 3
*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.52, size = 122, normalized size = 1.09 \[ -\frac {\frac {60 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} + \frac {40 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{3}} - \frac {a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 10 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 85 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{20 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

-1/20*(60*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 + 40*tan(1/2*d*x
+ 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a^3) - (a^12*tan(1/2*d*x + 1/2*c)^5 + 10*a^12*tan(1/2*d*x + 1/2*c)^3 +
85*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d

________________________________________________________________________________________

maple [A]  time = 0.08, size = 139, normalized size = 1.24 \[ \frac {\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )}{20 d \,a^{3}}+\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d \,a^{3}}+\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}-\frac {1}{d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d \,a^{3}}-\frac {1}{d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x)

[Out]

1/20/d/a^3*tan(1/2*d*x+1/2*c)^5+1/2/d/a^3*tan(1/2*d*x+1/2*c)^3+17/4/d/a^3*tan(1/2*d*x+1/2*c)-1/d/a^3/(tan(1/2*
d*x+1/2*c)-1)+3/d/a^3*ln(tan(1/2*d*x+1/2*c)-1)-1/d/a^3/(tan(1/2*d*x+1/2*c)+1)-3/d/a^3*ln(tan(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

maxima [A]  time = 1.48, size = 165, normalized size = 1.47 \[ \frac {\frac {40 \, \sin \left (d x + c\right )}{{\left (a^{3} - \frac {a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}} + \frac {\frac {85 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}}{20 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

1/20*(40*sin(d*x + c)/((a^3 - a^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x + c) + 1)) + (85*sin(d*x + c)/
(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3 - 60*lo
g(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 0.40, size = 111, normalized size = 0.99 \[ \frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{2\,a^3\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20\,a^3\,d}-\frac {6\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-a^3\right )}+\frac {17\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,a^3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + a*cos(c + d*x))^3),x)

[Out]

tan(c/2 + (d*x)/2)^3/(2*a^3*d) + tan(c/2 + (d*x)/2)^5/(20*a^3*d) - (6*atanh(tan(c/2 + (d*x)/2)))/(a^3*d) - (2*
tan(c/2 + (d*x)/2))/(d*(a^3*tan(c/2 + (d*x)/2)^2 - a^3)) + (17*tan(c/2 + (d*x)/2))/(4*a^3*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {\sec ^{2}{\left (c + d x \right )}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*cos(d*x+c))**3,x)

[Out]

Integral(sec(c + d*x)**2/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x)/a**3

________________________________________________________________________________________